Showing posts with label boyd. Show all posts
Showing posts with label boyd. Show all posts

Tuesday, 19 December 2017

Robert Boyd: A Different Kind of Animal

Robert Boyd's new book on cultural evolution is out. It is titled:

A Different Kind of Animal: How Culture Transformed Our Species

The publisher's blurb is here. It says, among other things:

Human beings are a very different kind of animal. We have evolved to become the most dominant species on Earth. We have a larger geographical range and process more energy than any other creature alive. This astonishing transformation is usually explained in terms of cognitive ability — people are just smarter than all the rest. But in this compelling book, Robert Boyd argues that culture — our ability to learn from each other — has been the essential ingredient of our remarkable success.
Google books has it here and offers a peek inside.

The publisher's site says:

Based on the Tanner Lectures delivered at Princeton University, A Different Kind of Animal features challenging responses by biologist H. Allen Orr, philosopher Kim Sterelny, economist Paul Seabright, and evolutionary anthropologist Ruth Mace, as well as an introduction by Stephen Macedo.

There's a review here.

Sunday, 23 November 2014

Rob Boyd: The puzzles of cooperation

Here Rob argues that the idea cooperation between humans which is not due to kinship must be due to reciprocity is wrong. That's correct. There are also manipulation and virtue signalling to consider - to mention just two other mechanisms.

Tuesday, 10 June 2014

Boyd and Richerson's cultural evolution vs memetics

Boyd and Richerson's conception of cultural evolution seems to have become on of the most popular ones in academia. It is one of the closest theories to memetics that academics have come up with. As it (correctly) says here: "the biggest difference is a difference in academic lineage". I've written various articles contrasting their views with memetics as I understand it. However, this seems like time for a summary post. Here are what seem to me to be the main "sticking points":

  • Terminology. Boyd and Richerson use "cultural variant" while memetics uses the "meme" terminology from Richard Dawkins. "Cultural variant" hides the link to biology in a manner apparently designed to appeal to anthropologists. With "meme" the link to biology is up front and central. As far as I can tell, the terms are functional synonyms - though "cultural variant" is a lot more long winded and a lot less popular.

  • Boyd and Richerson seem to see many more differences between cultural and organic evolution than memeticists do. For details of this see the differences remain exaggerated article. To memeticists, Boyd and Richerson seem to not understand the parallels properly. That matters, because understanding the similarities and differences is one of the primary points of the scientific effort to study cultural evolution.

  • Boyd and Richerson have put a big focus on gene-meme coevolution. By contrast in memetics, genes typically change too slowly to be worth considering, and the main focus is on the evolution of memes. A related difference is that Boyd and Richerson have mostly been considering events many thousands of years ago. Memetics generally has much more modern concerns. Gene-meme coevolution is a much more complex, difficult and poorly-understood topic than memetic evolution is. Many academics became obsessed with it in the 1980s. It was not a particularly positive obsession. It was rather like trying to fly before you could walk. Impressive, but not terribly sensible.

  • Memetics is symbiology-rich. Boyd and Richerson have written a little about symbiology in cultural evolution, but mention it rarely and seem to regard it as an analogy. To a memeticsist, their work often appears to be symbiology-challenged.

  • Boyd and Richerson are long-standing supporters of group selection. By contrast, I - and probably most other evolutionists - prefer to look at evolution in terms of kin selection. Group selection appears to have led Boyd and Richerson astray. For example they argued in their 2005 book that group selection did not have a significant effect on human DNA. Now that the equivalence of kin selection and modern forms of group selection is widely understood, this claim appears to be unsupportable.

  • Memeticists tend to be Darwinian revolutionaries. By contrast, Boyd and Richerson do not seem to be revolutionaries. Instead, they say:

    We believe that the Darwinian theory of cultural evolution will make contributions across the broad sweep of problems in the human sciences, but the project is one of introducing additional useful tools and unifying concepts rather than an imperial ambition to replace great swaths of existing theory or methods.

    They even contrast their "better mousetrap" with Dennett's "Universal acid". I remember that one of my thoughts on reading "Not by Genes alone" was: how do they make this revolutionary material seem so dry?

On a slightly more positive side, by persistent efforts, Boyd and Richerson appear to be managing something memetics has yet to achieve - namely making cultural evolution respectable in academia. There's still a long way to go here, but their efforts here are welcome.

On the other hand, if it wasn't for them, maybe we would have some real memetics in academia - instead of a feeble and watered-down version apparently designed to appeal to anthropologists. As vocal opponents of memetics, Boyd and Richerson may well have a lot to answer for. I think most students of memes have ambivalent feelings towards their work.

We still need a strong version of memetics to be championed from within academia. My current expectation is that the promise of cultural kin selection will help to open the flood gates on a meme-oriented view of cultural evolution - broadly mirroring what happened with kin selection and genes in the the organic realm in the 1960s and 1970s.

References

Saturday, 2 November 2013

Robert Boyd: How Culture Shaped Human Evolution

Here are a couple of recent videos from cultural evolution pioneer, Robert Boyd:

Robert Boyd: "How Culture Shaped Human Evolution"

Interview: Robert Boyd

Saturday, 20 April 2013

Tim Tyler: Boyd & Richerson, Culture and the Evolutionary Process (review)

Transcript:

Hi. I'm Tim Tyler, and this is a review of this book:

Culture and the Evolutionary Process by Robert Boyd and Peter J. Richerson
This book was published in 1985. It is the best book on cultural evolution from the 1980s. It builds on top of earlier work by Cavalli-Sforza and Feldman, who had outlined a similar approach, in less detail in 1981. Boyd and Richerson do a better job than previous authors did of placing their material in its historical context, and offered a better review of other related material.

However, the book has quite a few problems:

It is full of densely-presented mathematical models. I think that these hinder more than they help. Maybe some people will be impressed by them, but I'm not really among them.

The book introduces terminology for cultural evolution. Much of this has not dated well. It uses the term "guided variation" - where, these days, most people would say "directed mutation". The book uses the term "biased transmission", whereas these days we would just say "cultural selection" or just "selection". Hardly anyone uses the term "biased transmission" these days. The book uses the term "cultural parents" and the term "cultural offspring" - but these are not used refer to memes, but rather to their associated hosts. This does not seem like good terminology to me.

The book is almost entirely free of symbiology. This is unfortunate, since any sensible modern theory of cultural evolution must necessarily be heavily based on symbiology. They do mention the concept at one point. They say:

Horizontal transmission is analogous in some ways to the transmission of a pathogen and Cavalli-Sforza and Feldman have used epidemiological models as a starting point for their development of theory. The item of culture being spread horizontally acts like a microbe that reproduces and spreads rapidly because it is "infective" and has a short generation length compared to the biological generation length of the "host". Fads and fashions and technical innovations are familiar examples.

This material is fine - as far as it goes. However three sentences is not really adequate coverage for this concept. You really need to cover cultural parasites, mutualisms, immunity, arms races - and so forth. Many biologists were still getting to grips with the significance of symbiology in the 1980s. However Cloak and Dawkins had previously managed to present a symbiology-aware version of cultural evolution in the 1970s. Boyd and Richerson failed to pick up on this. What do they offer instead? They say:

This does not mean that cultures have mysterious lives of their own that cause them to evolve independently of the individuals of which they are composed. As in the case of genetic evolution, individuals are the primary locus of the evolutionary forces that cause cultural evolution and in modelling cultural evolution we will focus on observable events in the lives of individuals.

This is not a good approach. It is like saying: to study the evolution of smallpox, we should focus on the human victims. The problem with this is that insufficient attention is given to the smallpox virus. You could say that smallpox exhibits horizontal and oblique transmission between its hosts. It exhibits "biased transmission" - due to different levels of resistance from host immune systems. These processes can all be modeled. While this sort of approach would result in some progress, it seems like a fundamentally misguided way of viewing the situation.

Cultural information exists apart from its human hosts. As well as spending some of its time residing in host brains. It exists in libraries, on discs, inside computer memory, in air vibrations and as radio waves. Libraries can burn down, sounds can suffer from interference, and compute memory exhibits senescence. Culture partly evolves outside its primary hosts. The result is a symbiosis between two different kinds of living and evolving systems. If you focus on observable events in the lives of individuals, you are likely to miss all this material.

Though this book presents a closer link between evolutionary processes in the organic and cultural realms than most previous authors managed, Boyd and Richerson don't really take the links far enough.

The main problems seem to be that, at this stage in their thinking, they didn't appreciate symbiology properly, and they didn't understand that evolution happens within minds, during individual learning - as well as between them, during social learning.

The authors have a section at the very start of their book comparing genetic and cultural evolution. They argue that humans get genes from their parents, but their memes come from a range of individuals. However, humans get viral and bacterial genes from a wide range of individuals as well. This is not really a valid difference between genetic and memetic variation. They argue that meme lifespans are different from host lifespans. However, this is true for DNA genes inside parasites too, and isn't a special feature of cultural evolution. They argue that humans get their genes at birth, while they acquire their culture gradually. However, humans acquire DNA genes gradually as well - it is just that these genes are sometimes inside parasites. They argue that cultural transmission occurs after some development has taken place. Yet this too also happens when acquiring parasites. They argue that cultural variation may be affected by life events, and then transmitted to others. Yet again, this happens with parasites. If you consume antibiotics, you may subsequently transmit antibiotic-resistant bacteria that you have acquired during your lifespan to others.

Boyd and Richerson's list of differences between cultural and organic evolution seems almost entirely invalid. This would not matter, except for the fact that much of the project of studying cultural evolution revolves around the issue of what the differences are. Where cultural and organic evolution exhibit the same dynamics, we can mostly use existing models. The rest of the book is largely devoted to mathematical models of the differences they identified.

While it would be interesting if researchers needed a broad array of new mathematics to model cultural evolution, for the most part, the dynamics of cultural evolution are largely shared with epidemiology and symbiology - and models from these fields can be adjusted to deal with culture with relatively minor tweaks - to cover phenomena such as conformist transmission which have few parallels in the organic realm. What needed doing in the 1980s was strengthening and expanding the models of epidemiology and symbiology to cover culture. Instead what we got was an attempt to drive a mathematical wedge between our models of cultural and organic evolution.

In the book, Boyd and Richerson put in a plea for simple mathematical models. Can their approach be excused on the grounds that they are simplifying? Not really. It isn't "simpler" to develop many unnecessary mathematical models based on illusory differences. Rather it results in increased complication through the proliferation of models. Nor is it simpler to only focus on one symbiont in a symbiotic relationship. The result is a byzantine maze of horizontal and oblique transmission vectors. Best to recognise both partners in the relationship and stick to two types of lineage with pure-vertical transmission within each of them. This is what is done with parasites and symbionts in the organic realm. The cultural realm is no different in this respect.

Overall, this was an important book. It probably wasn't as influential it could have been - since its mathematical models and technical style probably presented a barrier for many readers. Still, most modern workers in the field do cite it, recognising its pioneering role. Since its publication, Boyd and Richerson have continued plugging away at the topic. They have produced a steady stream of papers on the subject - including many valuable ones - along with a few more muddled ones. Despite its virtues, this book's problems - or perhaps the perspective of its authors - seems to have resulted in a bit of a hangover for cultural evolution within academia. Dawkins had clearly presented a framework which was more correct in a number of respects many years before. However, over time, these two camp's relationship increasingly turned into a rivalry. Instead of a synthesis, the result seemed to be tribalism and conflict.

The book was probably the first detailed treatment in academia of maladaptive forms of culture - the insight that cloak and Dawkins originally presented. It pointed out that kin selection apples to memes. It applied runaway selection processes to memes. It modeled memetic conformity. It discussed the possibility of memes sterilizing their hosts and diverting their reproductive resources away from gene propagation and into meme propagation. Overall, there is much of interest in it.

Enjoy,

Thursday, 2 August 2012

Cultural species

Some claim there is no such thing as a species - in the context of cultural evolution.

For example, the image to the right is a slide from one of Robert Boyd's lectures (Rob plainly borrowed it from Krobner (1948)). He explains (38 minutes in) that the left tree is the tree of life and the right tree is the tree of culture. He says:

Famously cultural evolution doesn't have any analog to species
...and...

There's no such thing, there's nothing like a species in cultural evolution and the theories that have been built of it don't have anything like a species in them.

However, there surely are cultural species. The problem with this diagram is not that the right-hand side is wrong, but that the left-hand side is wrong. To a first approximation, most organisms are bacteria, and their phylogenetic tree looks much more like the right-hand tree than the left-hand tree. A bit of information transfer doesn't destroy the idea of a species. If it did, then horizontal gene transfer by viruses would mean that there is no such thing as a species. Remember that 8% of human DNA comes from viruses.

My most common examples of cultural species are origami patterns and FORTRAN programs. These things are pretty clearly delimited - and so qualify as species. Also, let's remember that whale song has yet to be decoded. Whale memes and human memes have yet to combine to an appreciable degree.

"Species" is too useful a concept to be confined to the organic realm. The cultural realm surely has its species too.

If your conception of a species is such that it turns out that there are no cultural species, then your concept of species has turned out to not be very generally applicable - and you should reconsider the criteria that you are using.

Others in the field do use the concept of cultural species as well. Kate Distin has a large section on cultural species in her Cultural Evolution book.

Tuesday, 24 January 2012

Does monogamy support cultural group selection?

The latest paper from Henrich, Boyd and Richerson is called "The puzzle of monogamous marriage". It ponders the puzzle of monogamous marriage - how monogamy has spread while wealth inequality has increased.

Much of the paper is devoted to showing that monogamy is good for society-level fitness. They invoke cultural group selection to explain monogamy's spread.

Slavery seems like a suitable point of comparison. This is also widely banned - despite the fact that the richest might be expected to benefit most from it.

Wife inequality is seen as more of a moral issue than wealth inequality - and technological growth independently fuels wealth inequality.

Is the spread of spread of monogamy down to cultural group selection? I'm sceptical. It is true that in the democractic, religious and political revolutions and invasions that have spread monogamy a whole buch of memes gets supressed at once. However, describing this as being a form of group selection seems a bit controversial. A whole bunch of birds went extinct at once when mammals reached New Zealand. However, few would describe that as being a form of group selection. The invading animals wiped out the natives bacause they were fitter than them - not because of group-level effects.

Looking at large groups of memes going extinct during a major mass extinction event isn't terribly good evidence for cultural group selection, IMHO. In general, one group of organisms systematically wiping out their neighbours is just evolution as usual. Group selection - at least of the type that is controversial among biologists - is a more demanding concept than this.

The outcome shows that the monogamy meme bacame fitter as civilization progressed. If it could additional be shown that monogamy lost out to polygamy within groups, that would then qualify as evidence for group-level selection. However, the paper doesn't do that, and the idea that the polygamy meme wins within groups is probably simply false. In which case, group selection is not clearly needed as a hypothesis to explain the results.

A simple explanation for monogamy is democracy. Monogamy is deleterious for 90% of males and probably most females too. The few males it benefits may be powerful, but they are simply out-flanked by the rest of society. This explanation is simple, obvious - and it doesn't invoke group selection.

Memetic altruism is the most obvious thing to look for if looking for evidence favouring cultural group selection. At the moment, people see things that aren't explained by existing theories of altruism, and then invoke forms of group selection. However, it seems to be that this happens largely because they don't have a decent list of the known causes of human altruism. That seems to be largely because of a widespread incomplete understanding of memetics. Account properly for the existing known causes of altruism and group selection theories have a lot less work to do.

Update 2012-01-31: Razib Khan is sceptical about the group selection too.

Thursday, 5 January 2012

The evolution of supposedly-altruistic punishment

I am pretty sceptical about many of the proposed applications of cultural group selection. It seems as though most of the features which advocates of cultural group selection propose can be explained more simply in other ways.

For example, the paper entitled The evolution of altruistic punishment explains the origins of human punishment using a model of cultural group selection.

However: there are many individual-level benefits to punishing others - in particlar, punishment is a high-status activity, which increases the punisher's rank at the expense of the rank of the recipient of punishment. Punishing others thus signals high status and improves your reputation - which may produce future benefits.

The finding that some people still expend resources punishing in anonymous one-shot interactions is probably best explained largely by resource-limited cognition - in conjunction with the unnatural nature of such interactions.

References

Thursday, 29 December 2011

Replicator rot

It does appear that some people have become confused about the role of high-fidelity copying in evolutionary processes - much as Henrich and Boyd (2002) claim.

Hull (1988) apparently based his theory of evolution on replicators, which he defined as follows:

replicator: an entity that passes on its structure largely intact in successive generations
The "largely intact" is problematical - cumulative adaptive evolution doesn't depend on high-fidelity transmission of structure - since low-fidelity transmission can be compensated for by error correction.

Let's call this mistake "replicator rot".

Aunger says this on the topic:

Any evolutionary process, including the cultural kind, needs only to exhibit features that correlate from one generation to the next. This quality is what biologists call heredity. Replication is a more precise claim about how evolution works — it suggests that a special kind of agent causes the recurrence of cultural features: a replicator. Some evolutionary approaches — competitors to memetics, such as sociobiology and evolutionary psychology — invoke only genetic heredity in their explanation of culture. I disagree. Socially transmitted information is central to the nature of culture. But when it is transmitted, is it replicated? That’s the crucial question.
He goes on to conclude that memes are replicators.

Dennett explains the basic evolutionary algorithm as being based on:

heredity or replication: the elements have the capability to create copies or replicas of themselves.
I think Dennett saves himself from replicator rot by including the terms "heredity" and "copies" - but it's a close call.

Blackmore and Dawkins mostly avoid the worst of the replicator rot as well - but they do so at the expense of giving the word "replicator" a counter-intuitive technical definition which avoids any mention of high-fidelity copying - with Dawkins (1982) saying:

I define a replicator as anything in the universe of which copies are made.
...and Blackmore (1999, p.5) saying:
a replicator is anything of which copies are made
Academic critics - such as Henrich and McElreath (2003) - typically finger Dawkins, Dennett and Blackmore - but their supporting evidence is usually inaccurate or vague.

Sue has said: "by definition, the information people copy is a replicator" and Dawkins has said: "Anything that is imitated is a form of replication". It seems clear that they don't intend any "high-fidelity copying" implications of the term "replicator" - and their explicit definitions of the term "replicator" confirm that this is indeed the case.

Dawkins did publicly succumb to replicator rot later on. In 2005's The God Delusion, page 191:

In its most general form, natural selection must choose between alternative replicators. A replicator is a piece of coded information that makes exact copies of itself, along with occasional inexact copies or 'mutations'.
This is simply wrong. Natural selection can choose between any items, whether they are frequently copied exactly or not.

In 2013, Dawkins offered:

Anything transmitted with high fidelity from brain to brain by imitation is a meme.
This is true - but it suggests that computer-based transmission doesn't count, and that high-fidelity copying is required. These both seem like highly dubious ideas.

References

Thursday, 22 December 2011

Tim Tyler: Sense and Nonsense (review)

Transcript:

Hi! I'm Tim Tyler and this is a video review of Sense and Nonsense by Laland and Brown.

Sense and Nonsense is a great book. It covers a range of evolutionary approaches to human behaviour. The key concepts of each approach are treated in turn in separate chapters and then the authors describe case studies and then offer a critical evaluation for each one.

The approaches considered are: sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene-culture coevolution.

There's also an introductory chapter, a chapter covering the history of the field prior to 1975 and a final chapter that wraps up.

I read the last three chapters first. These are the ones on memetics, gene-culture coevolution and the last chapter on "comparing and integrating approaches". I did this because Memetics and gene-culture coevolution are really the only remaining attempts at a proper study of human evolution, and that matches my own particular interests.

The authors are mostly in the "gene-culture coevolution" camp. They seem to be mostly looking at the other approaches to see where they went wrong. Their descriptions of the other approaches are pretty fair, but they do go out of their way sometimes to make then look stupid.

Despite this, their coverage of memetics is mostly accurate, sympathetic and good. However, the authors do say:

Perhaps because of the need to demonstrate that culture is a genuine evolutionary process in its own right and cannot be reduced to a mere product of biological evolution, so far meme enthusiasts have concentrated almost exclusively on the characteristics that make memes infectious. However, the success of a virus depends not only on its infectiousness but also on the susceptibility of its hosts and on whether the social environment promotes contact between hosts. The same three factors may also determine the success of memes (Laland and Odling-Smee, 2000). Were memeticists to accept that evolved genetic predispositions may influence meme adoption, leaving human beings particularly susceptible to acquiring memes that increase their reproductive success, they would converge on the ideological position of advocates of gene–culture coevolution.
This seems strange to me. I checked with Blackmore's meme book - published three years before "Sense and Nonsense" - and she has a section about how meme transmission depends on both properties of the memes and properties of their hosts on page 15.

Aaron Lynch's 1996 book talks about "cognitive immune reactions" against memes, the idea of a "memetic immune mechanism".

The idea that memetics doesn't have this covered seems to me to be patronising nonsense.

The authors claim that memetics:

denies any substantive filtering role for evolved psychological mechanisms.
I am very sceptical. I've never come across any author who has said anything remotely like that. I suspect this is down to some kind of misunderstanding.

The next chapter is about gene-culture coevolution. I found some oddities there as well. The book says:

Social transmission can occur vertically (that is, from parents to offspring), obliquely (from the parental to the offspring generation; for instance, learning from teachers or religious elders) or horizontally (that is within-generation transmission, such as learning from friends or siblings). Of course, genetic inheritance is exclusively vertical and hence, as social transmission frequently occurs through some combination of these modes of information transmission, cultural evolution and gene–culture coevolution may commonly exhibit quite different properties from biological evolution.
However, this is completely untrue. Organic entities can be transmitted down the generations horizontally and obliquely too. This happens with parasites and mutualists. This is in fact a deep similarity between organic and cultural evolution - rather than grounds for treating them differently.

I felt the authors were rather soft on Boyd and Richerson's Cultural Group Selection concept. They say:

Boyd and Richerson propose an alternative form of group selection that just might work.
...and then use the concept to support the thesis that:
Their analysis demonstrates that, when cultural transmission is included into evolutionary models, the nature of the evolutionary process may be quite dramaticallly different.
However, this is not a very reasonable conclusion. Parasites also act so as to rapidly produce and maintain differences between groups of humans. Parasites have very similar dynamics to culture in this respect. Like culture, they involve horizontal spread between hosts, short lifecycles and rapid evolution. As with culture, migrants tend to adopt the parasites of their new population. We have empirical data on the relative influence of parasites and culture when it comes to death as a result of humans invading other groups of humans - since there have been many invasions in recorded history - for example in America, Australia and Africa. Organic parasites (such as smallpox) did a large proportion of the work in producing fitness differences between groups of humans in many of the cases studied - accounting for more than half the deaths in some cases. Culture does some of this work too - but the organic and cultural realms are not so different here.

There are some differences between organic and cultural evolutionary change - but Cultural Group Selection seems to be a poor example of such a difference - since parasites and mutualists in the organic world behave so similarly.

Next, th chapter on evolutionary psychology. This chapter is excellent. I especially appreciated the idea that the popularity of evolutionary psychology is partly due to its manifest lack of racism. However, the authors don't mention the biggest criticism of evolutionary psychology until the very end of their chapter. That criticism is that - as currently practiced - evolutionary psychology only deals with human universals and says little about cultural evolution. I feel that this point needs to be emphasised at least a little. While evolutionary psychology only deals with human universals it will remain a folorn and useless endeavour. Culture is just too important a force to ignore. Ignoring it has produced a substantial mountain of evolutionary psychology-based junk science. To become relevant, evolutionary psychology must reform itself - or attempt to fuse with memetics and/or gene-culture coevolution.

The chapter on human behavioural ecology is again of fine quality. However, human behavioural ecology isn't really a seriopus attempt to model human evolution. It is a small piece of the puzzle.

The chapter on sociobiology was excellent as well. Controversy makes for readability, and this chapter was quite a page-turner. Sociobiology was a nice idea but it became rather tarred by association with Wilson's presentation of it - which had both theoretical and political shortcomings. Wilson went on to try and fuse sociobiology with his own version of gene-culture coevolution - an attempt which met with only rather limited success. These days sociobiology seems to have mostly become a dirty word - which is a bit of a shame.

Lastly the history chapter. This covers Charles Darwin, Herbert Spencer, Jean Baptiste de Lamarck, Francis Galton, Konrad Lorenz, Desmond Morris - and many others. I thought this was the worst chapter in the book - and recommend readers read it last - so they are not put off. One of the chapter's themes is that people believed in progressive evolution - which led to all manner of social evils - whereas now we know that evolution has no direction. However, progressive evolution is a perfectly reasonable concept, and it is clearly evident in the world. The authors apparently criticise it without even trying very hard to understand it. Social evolution is a politically-charged subject. I appreciate that it is hard to cover the subject objectively - but I felt that the authors failed to keep their own political perspective out of the picture.

The book has dated rather little in the 10 years since 2002 - though I believe the work has been republished recently. Gene-culture coevolution is now on a much firmer footing. The author's call for more experimental work has been met in the mean time with a substantial volume of work demonstrating cultural evolution under laboratory conditions, and probing the properties of cultural transmission processes.

The authors manage to make themselves look pretty smart in the book, by poking holes in practically all the existing theories. That is not unreasonable - the authors are obviously pretty smart people - but I found it a little grating. From time to time, I noticed that the criticised theories were getting bent out of shape a little - in ways which helped to give the authors some corrective work to do.

The book is very broad and ambitious in scope. Alas, that means it inevitably lacks depth. I would have much preferred a book about the topic covered in the last three chapters. Having said that, several of the other chapters were mostly high-quality entertaining content containing material which I was less familiar with - so I learned more from them.

Anyway, overall a great book, I expect that most readers will learn a considerable amount of interesting things about how evolution applies and has been applied to humans from it.

Enjoy,

Wednesday, 14 December 2011

Memes in "The Origin and Evolution of Cultures"

Going through "The Origin and Evolution of Cultures" - I find that it is pretty saturated with the "m" word - much of it apparently uncritical.

There are some interesting critical bits which I hadn't seen elsewhere. Boyd and Richerson say:

On the one hand, we have great sympathy with the views of the ‘‘universal’’ Darwinists like Daniel Dennett, Robert Aunger, and Susan Blackmore, who, following Richard Dawkins, employ the term to stress the analogies between genes and culture. On the other hand, we have several worries. One is academic punctilio. When Dawkins (1976) coined the term meme, he quite frankly admitted that he had done no scholarship in the social sciences. Fair enough in the context of a trade book, but, in fact, another pioneering universal Darwinist, Donald Campbell (1965, 1975), had done significant work on cultural evolution by 1976. Lucca Cavalli-Sforza and Marc Feldman (1973) had already published their pioneering formal models of cultural evolution.
So: Dawkins wasn't first. He realised that - citing Cavalli-Sforza and others at the time. That criticism doesn't seem very "substantial". They go on to say:

[A] more substantive problem is that the analogy between genes and culture is not very deep. The two are similar in that important information is transmitted between individuals. Both systems create patterns of heritable variation, which in turn implies that the population-level properties of both systems are important. Population-level properties require broadly Darwinian methods for analysis. But this just about exhausts the similarities. The list of differences is much larger. Culture is not based on direct replication but upon teaching and imitation. The transmission of culture is temporally extended. It is not necessarily particulate. Psychological processes have a direct impact on what is transmitted and remembered. These psychological effects can produce complex adaptations in the absence of natural selection. Users of the meme concept seem to us to believe that it does more work than it really does.
My perspective is rather different. If we just stick to the direct link between memes and genes, both exhibit: heredity, drift, selection, linkage, hitchhiking, expression, gradualism, and extinction.

However, that isn't reallythe correct way of looking at things. Rather there's a deep link between cultural and organic evolution. Both exhibit heredity with variation and selection - and in a benign environment, much follows from that - including cumulative adaptation, symbiosis, parasites, mutualism, drift, ontogeny, phylogeny, linkage, hitchhiking and devolution. The link between genes and memes is just one aspect of a much deeper set of features shared between cultural and organic evolution. Similarly there's a relationship between male and female human bodies. Male breasts are not the same as female breasts, but we know that are equivalent in a deep sense - because of all the other links between male and female bodies. It would be bad practice to just focus on the features of one organ - and then reject the link because of percieved differences - male and female breasts are homologous structures. So it is with memes and genes. There are deep links between organic and cultural evolution. After taking those into account, genes map onto memes.

As for the supposed differences Boyd and Richerson list:

  • The transmission of organic parasites and mutualists can be "temporally extended" too;
  • Psychological processes impact organic evolution too - for example via sexual selection;
  • Psychology producing complex adaptations mostly happens when the complex adaptation has previously been produced elsewhere via a selective process - or when a selective process goes on in the brain. The other cases are more like the way a footprint is an adaptive fit for a foot (such processes are not confined to human culture). Overall, this isn't really much of a difference.
That leaves: "Culture is not based on direct replication but upon teaching and imitation." That's sometimes true - though it is worth noting that probably the vast majority of human culture (in terms of bits) is copied using computer systems with extremely high copying fidelity. However, the general idea is that copying occurs - i.e. Shannon mutual information between the copies is created. The details of how that happens can be a bit different. Cultural heredity is not necessarily exactly the same as organic heredity - just pretty similar.

Another thing they say is:

We believe that the Darwinian theory of cultural evolution will make contributions across the broad sweep of problems in the human sciences, but the project is one of introducing additional useful tools and unifying concepts rather than an imperial ambition to replace great swaths of existing theory or methods.
I think these fellows are within the anthroplogy department - so perhaps they are being polite. The social sciences are long overdue for a pretty spectacular and disruptive Darwinian revolution. Not too much pre-Darwinian biology survived Darwin's transition. Perhaps the social sciences will fare better - because they are older and wiser - but surely we can already see a large pile of dirty laundry that just needs throwing out.

References

Monday, 12 December 2011

Understanding of cultural symbionts in academia

Many modern academic students of cultural evolution seem to share a common problem with understanding how cultural evolution operates. Though some pay lip service to the idea, they don't seem to fully appreciate that culture's relationship with human hosts is a symbiosis.

Some quotes (some of which I have discussed before) illustrate the syndrome:

Kevin Laland and Gillian Brown, Sense and Nonsense (2004, p.253):

Social transmission can occur vertically (that is, from parents to offspring), obliquely (from the parental to the offspring generation; for instance, learning from teachers or religious elders) or horizontally (that is, within-generation transmission such as learning from friends or siblings). Of course, genetic inheritance is exclusively vertical and hence, as social transmission frequently occurs through some combination of these modes of information transmission, cultural evolution may commonly exhibit commonly exhibit quite different properties from biological evolution.
Paul Erlich The Evolution of Norms (2005):
Among humans, genes can only pass unidirectionally from one generation to the next (vertically), normally through intimate contact. But ideas (or “memes”) now regularly pass between individuals distant from each other in space and time, within generations, and even backwards through generations. Through mass media or the Internet, a single individual can influence millions of others within a very short period of time.
William Durham (1991, p.193) says:
genes usually cannot be transmitted independently of the reproduction of their carriers. This constraint obviously does not apply to memes.
Peter Richerson, in The Evidence for Culture Led Gene-Culture Coevolution: The Naturalization of Culture or the Culturalization of Human “Nature”? (2011) wrote:
We do know that culture is most ungene-like in many respects. Culture has the principle of inheritance of acquired variation (what one person invents another can imitate). We are not necessarily blind victims of chance imitation, but can pick and choose among any cultural variants that come to our attention and creatively put our own twist on them. we don’t have to imitate our parents or any other specific individuals but can always be open to a better idea, or own invention or someone else’s.
Alex Mesoudi, Cultural Evolution (2011) has a similar passage:
One of the more obvious differences between cultural and biological evolution involves the potential transmission pathways each involves. Genetic inheritance is often thought of as being exclusively vertical and biparental, with genetic information transmitted in equal amounts from two parents to a single offspring. In culture, on the other hand, one can learn beliefs, ideas, skills, and so forth, not just from one's biological parents (termed "vertical cultural transmission"), but also from other members of the parental generation ("oblique cultural transmission") and from members of one's own generation ("horizontal cultural transmission").
...though Mesoudi continues by acknowledging:
In fact many of these pathways of cultural transmission have parallels in biological evolution.
...although he fails to mention any of the key phenomena of mutualism, partasitism or symbiosis.

Most of the material above is completely wrong. Symbionts (parasites and mutualists) commonly pass "horizontally" between humans. Parasite genes are shared horizontally by kisses, sex, holding hands and sneezing. Mutualist symbionts and their genes are shared between humans at gardening shops, farms, seed shops and fruit shops. Oblique transmission and transmission "backwards" - down the host generations - work in a similar manner. It should be a matter of acute embarrassment among theorists of social evolution to have missed this.

Such symbiont exchange is by no means confined to humans or other creatures with culture - it occurs ubiquitously in the animal kingdom.

In my experience, many of the misunderstandings of memetics actually turn out to be misunderstandings of how biological evolution works. This example is a case in point.

These academic students of cultural evolution usually go on to say that - because of these differences, we need new models to deal with the situation - and then they go on to develop elaborate extended genotype models to deal with the situation. No! That is not how science is done. The existing models of organic symbiosis handle all these cases just fine. We do not need a raft of new models just to deal with the case of organisms whose genes happen not to be made out of DNA.

Mesoudi's defense of this practice reads:

Nevertheless, most quantitative models of genetic inheritance are indeed based on the assumption of vertical inheritance, making it necessary to construct models tailored specifically to the cultural case.
Not everyone in academia gets this wrong. David Hull, for example was pointing out this mistake back in 1988:

In this connection, commentators often state that biological evolution is always vertical whereas conceptual evolution is likely to be "horizontal". By this they mean that the transmission of characteristics in biological evolution is always from parent to offspring (ie, inheritance). Characteristics always follow genes. In point of fact, biological evolution is not always vertical, even when characteristics follow genes. For example, it is horizontal when bacteria, paramecia, etc. exchange genetic material. Horizontal transmission can even be cross-lineage, as when viruses pick up genes from an organism belonging to one species and transmit them to an organism belonging to a different species.
There are a few cases of recognition of symbiosis:

Most mathematical models of cultural evolution derive from epidemiology. The terminology of "horizontal transmission", "vertical transmission" and "oblique transmission" comes from epidemiology. Epidemiology itself is mostly - though not exclusively - concerned with symbiosis.

Boyd and Richerson (1985) have three sentences on symbiosis. They say:

Horizontal transmission is analogous in some ways to the transmission of a pathogen
...and...
The item of culture being spread horizontally acts like a microbe that reproduces and spreads rapidly because it is "infective" and has a short generation length compared to the biological generation length of the host. Fads and fashions and technical innovations are familiar examples.
Boyd and Richerson (2005, p.165) has a paragraph on symbiosis:

The nonparentally transmitted parts of culture are analogous to microbes. Our immune system evolved to kill microbial pathogens but it also allows us to acquire helpful symbionts. As we know all too well, microbial pathogens are common, despite the sophistication of the immune system. One reason is that we are not the only players in this game. Natural selection helps parasites trick our immune system. Since microbial populations have short generation times and large populations, parasite adaptation can be very rapid. The psychology of social learning is like an immune system in that it is adapted to absorb beneficial ideas but resist maladaptive ones. And, like the immune system it is not always able to keep up with rapidly evolving cultural “pathogens.”
This section is pure memetics. They also implicitly endorse symbiosis in their section on "selfish memes" (p.153-154).

In "The Role of Evolved Predispositions in Cultural Evolution" they say:

An empirical study of the spread of heroin addiction describes the close resemblance of its dynamics to the spread of disease that requires intimate contact (Hughes and Crawford 19721. Addiction is spread along chains of close friendship. Addicts remain infectious only in the early stapes of addiction, while the p1easurabte aspect of the drug still outweighs the manifest disability of advanced addiction. Only a limited population of susceptible individuals is at risk of acquiring the addiction even if exposed. Many simple epidemiological principles probably apply to pathological cultural traits - e.g., parents notice that the incidence of minor microbial infections and various obnoxious habits in children increase together when they first go to school. Crowded classrooms of young susceptibles are the ideal environment for the spread of pathogens of both types by horizontal transmission among the children!
There's a similar section in their paper: "Built For Speed, Not For Comfort".

...and there is a fairly specific endorsement of the idea from Peter Richerson here:

I think it is near to undeniable that cultural variants are sometimes selected to become selfish pathogens along the lines that Dawkins suggested. Since some cultural variants can spread rapidly among people, as in the case of fads, they rather resemble the life cycle of a viral or bacterial pathogen.

Sunday, 11 December 2011

Cultural group selection: not so special

Many enthusiasts for the idea that culture evolves also seem to favour the idea of group selection.

Ed Wilson has returned to the "group selection" camp in recent years. David Sloane Wilson promotes both cultural evolution and group selection.

Something called "cultural group selection" is promoted by Boyd, Richerson, Mesoudi, Henrich, Gintis and Nesse as being a significant force which has supposedly helped to shape human ultrasociality.

Many of these authors claim that cultural group selection is dramaticallly different from group selection in the organic realm. For example, Boyd and Richerson (2005) write:

selection between large groups of unrelated individuals is not normally an important force in organic evolution. Even very small amounts of migration are sufficient to reduce the genetic variation between groups to such a low level that group selection is not important. However, as we will explain below the same conclusion does not hold for cultural variation.
This article argues that "cultural group selection" actually closely mirrors group selection acting on parasites in organic evolution.

Enthusiasts for "cultural group selection" claim that cultural evolution acts to rapidly create between-group differences and jelps to prevent gene flow between groups. The between-group differences may also result in one group having a selective advantage. It is conjectured that these differences are sufficient to overcome the problems usually associated with group selection in the organic realm.

However, in the organic realm, evolution of pathogens also acts to rapidly create differences between populations. Pathogens can also cause between-group differences in fitness. This was seen (for example) during the European invasion of North America - where smallpox alone killed 25% of the Aztec population and between 60% and 90% of the Inca population.

One of the mechanisms proposed by Mesoudi and Jensen (2010) that would act to assist cultural group selection is that migrants adopt the social norms of their new group - acting to preserve group variation.

Migration is also a big problem for genetic group selection: in many group-living species one sex typically disperses out of the group, reducing between-group genetic differences. In humans, however, migrants often acquire the social norms of their new cultural group, maintaining between group cultural variation and consequently allowing cultural group selection to act.
However, much the same thing happens in the organic realm as well: migrants go on to contract the parasites of the groups they migrate into.

Sometimes migrants successfully introduce parasites into their new group. However that happens with culture too - migrants can carry beneficial ideas and inventions that subsequently spread like a plague through the new group.

Mesoudi and Jensen (2010) propose that the evolution of modern corporations may exhibit a form of group-level selection on human culture. However, there employees regularly drift between organisations, carrying skills and knowledge with them. NDAs and employment contracts attempt to prevent such losses, with limited success.

Corporations do represent large-scale cultural entities that compete with one another for human resources. However, flu strains also compete with one another on a large scale for access to human hosts. Just as employees of two different corporations may attend the same Masonic meetings, and the same bridge club, so hosts of different strains of flu virus may be infected weith different strains of warts virus and different strains of syphylis.

The broad equivalence between the cultural and organic realms in this area should come as no surprise for those who are already accustomed to treating culture as composed of rapidly-reproducing symbionts with "genes" which are not made out of DNA.

Another issue in this area concerns whether group selection on culture (or parasites) results in group selection on the level of the DNA genomes of their hosts. Between-group differences, sharper group boundaries and differences in fitness between groups may result in the deaths of host groups, along with the deaths of their culltures and parasites.

However, it is fairly common for invaders to spare native women. Also, it seems implausible that between-group migration rates are low enough to prevent individual-level selection swamping group selection when considering only DNA inheritance. Group selection in the human DNA-gene pool is probably a fairly minor force.

Are there differences between groups of humans with different cultures and groups of humans with different parasites which are relevant to the issue of group selection? Yes: culture acts as visible marker which acts to distinguish different groups. That may make the boundaries between groups crisper, and reduce gene flow between them. Parasites probably do that to a much reduced extent. Immigrants are less clearly marked out by their different parasites than by their different cultures - since their parasites are quite often invisible latent infections. They might hesitate to enter new groups through fear of the group's parasites, though. Similarly, groups might reject imigrants out of concern for acquiring their parasite load. However, xenophobia based on cultural cues is probably a more intense force.

Proponents cite conformity and punishment as mechanisms which stabilise groups so they act as independent units. However, such forces apply mainly within the moral realm - and not to (say) the spread of innovations. Some aspects of culture are more likely to spread between groups - and are less likely to be subjected to group-level selection forces. Spread of innovation is one of the main factors strong enough to produce significant group-level fitness differences. These issues are probably not major difference between the organic and cultural realms as far as group selection goes. In conclusion, the "cultural group selection" enthusiasts appear to be greatly exaggerating the differences between the cultural and organic realms. Differences between the applicability of group selection to the two domians are probably mostly fairly minor. If culture is to be used to argue that group selection is an important force, much the same argument applies to parasites in the organic realm.

References

Wednesday, 7 December 2011

Memetics podcasts

Here are a few podcasts about memetics:

Susan Blackmore

Richard Dawkins

Daniel Dennett

Richard Brodie

Memetics

Royal Society audio files

Misc

Friday, 18 November 2011

Meme FUD in the "Dual inheritance theory" article on Wikipedia

The "Dual inheritance theory" article on Wikipedia contains quite a lot of FUD in its section about memetics. I've looked at this article previously - but here I will here responses to all its points:
Memetics, which comes from the meme idea described in Dawkins's The Selfish Gene, is similar to DIT in that it treats culture as an evolutionary process that is distinct from genetic transmission. However, there are some philosophical differences between memetics and DIT.
True so far.
One difference is that memetics' focus is on the selection potential of discrete replicators (memes), where DIT allows for transmission of both non-replicators and non-discrete cultural variants.
Both Dual inheritance theory and memetics focus on small pieces of cultural information. The "cultural variants" of Boyd and Richerson are the same thing as the "memes and memeplexes" of memetics. They are not "more discrete", nor do they differ in their degree of replicatability - they are different terms for the same idea. If there is a difference it is that memetics draws a distinction between "memes" and "memeplexes", while the "cultural variants" terminology which Boyd and Richerson prefer bundles these two concepts together. That difference is surely not a big deal.

DIT does not assume that replicators are necessary for cumulative adaptive evolution.
That is not a difference. High-fidelity information transfer is necessary for cumulative adaptive evolution. High fidelity transmission in the underlying channel is not (because of error correction). This is just basic information theory. For more details see the essay here.
DIT also more strongly emphasizes the role of genetic inheritance in shaping the capacity for cultural evolution.
Quite a bit has been written about "memetic immunity". The 1992 book "Coevolution: Genes, Culture, and Human Diversity" is saturated with both memes and all kinds of interactions with genetic inheritance. It seems obvious that culture is supported by adaptations - for example speech and breath control. This is widely recognised. So: differences in this area seem to be of rather minor significance.
But perhaps the biggest difference is a difference in academic lineage. Memetics as a label is more influential in popular culture than in academia.
Those bits are both true.
Critics of memetics argue that it is lacking in empirical support or is conceptually ill-founded, and question whether there is hope for the memetic research program succeeding.
Right - but one doesn't judge a research program by what its critics say about it!
Proponents point out that many cultural traits are discrete, and that many existing models of cultural inheritance assume discrete cultural units, and hence involve memes.
Actually most proponents I am aware of think that this material about memetics not including "non-discrete culture" is a bunch of nonsense. Memetics is no different from dual inheritance theory in this regard. This proponent does not defend memetics in that way at all.

The reference provided in support of this sentence is the entire book "Sense and Nonsense" (2002). I've read that book - and it doesn't defend memetics in that way either. Not that Laland and Brown are big sympathisers towards memetics in the first place.

Culture exists in analog forms. Such forms have a heritable basis, and so are composed of memes. This really is not a problem.

If in doubt, see the definitions of the term "meme" in dictionaries. Nowhere does it say that memes are discrete entities which can't represent analog forms or blending inheritance.
Update 2016-08-16. A more detailed reference has been added to the Wikipedia article giving a page number. The pages in question still provides no support for the thesis.

Wednesday, 12 October 2011

Memes in "Not by genes alone"

Boyd and Richerson have led the adademic bashing of memetics by cultural evolution researchers, arguing the term "meme" too-strongly implies discreteness and high-fidelity copying. Scientific meme enthusiasts mostly disagree - saying that discreteness and high-fidelity copying are not too-strongly implied by the term - and they cite the dictionary definition of "meme"- which makes no mention of "discreteness" or "high-fidelity copying".

However Boyd and Richerson do use the term "meme" in their 2005 book "Not by genes alone" - in a context apparently divorced from criticism - on page 244:

Modern societies, by vastly enlarging the scope for nonparental transmission have also increased the chance of choosing maladaptive memes.
According to Runciman (2009, p.53), the explanation for this is that Boyd and Richerson initially drafted the book using the term "meme" throughout - and then replaced it with their own term ("cultural variant"). However their "meme sweep" did not catch all the occurrences of the term "meme".

Peter Richerson once had this to say about the similarity:
Our project has involved borrowing models from population genetics and applying them to cultural evolution - much like the meme idea.
I think Boyd and Richerson's "cultural variants" are the same thing as memes, despite their protesations to the contrary.

The history of memetics might have been rather different if "Not by Genes Alone" had endorsed the "meme" terminology. For one thing, there would have been less need for me to write my own (2011) book on memetics.

Having said that, I've also looked at "The Origin and Evolution of Cultures" - and it is pretty saturated with the "m" word - much of it apparently uncritical.

References

  • Richerson, Peter J. and Boyd, Robert (2005) Not by Genes Alone: How Culture Transformed Human Evolution.
  • Richerson, Peter J. and Boyd, Robert (2005) The Origin and Evolution of Cultures.
  • Runciman, W.G. (2009) The Theory of Cultural and Social Selection.
  • Tim Tyler (2011) Memes in The Origin and Evolution of Cultures.

Wednesday, 14 September 2011

Why no cultural creatures in academia?

Now that cultural evolution is making such good progress in academia, can memeticists just leap onboard?

I don't think so - not just yet, anyway. Apart from the whole issue of long-winded terminology, although these are very similar theories, they have a different emphasis and history - and memetics is still much, much better in some areas. The approaches obviously need to fuse - but at the moment they still have some significant incompatibilities.

Alex Mesoudi - in his recent book - has a soundbite which encapsulates one of the differences in the approaches of academic researchers in cultural evolution and memetics.

Mesoudi says:

In a typical cultural evolution model, a population is assumed to be composed of a set of individuals, each of whom posseses a particular set of cultural traits. A set of microevolutionary processes is specified that changes the variation of those traits over time.

I can verify that this is a pretty accurate description of what most cultural evolution models in academia are like.

By contrast in memetics, there are organic creatures and cultural creatures - two interwoven lifecycles to consider. These typically play the role of host and endosymbiont. The endosymbionts are usually parasites, or mutualists. All the standard models of symbiosis in biology are thus applicable to the cultural realm, and can simply be imported.

On page 7 of Culture and the Evolutionary Process, Boyd and Richerson give what appears to be an argument against such cultural creatures. They say:

This does not mean that cultures have mysterious lives of their own that cause them to evolve independently of the individuals of which they are composed. As in the case of genetic evolution, individuals are the primary locus of the evolutionary forces that cause cultural evolution and in modelling cultural evolution we will focus on observable events in the lives of individuals.

This seems to be fundamentally the wrong approach. It is like saying: to study the evolution of AIDS, we should focus on on observable events in the lives of the AIDS sufferers. Yes, that method will result in some progress - but it is a fundamentally misguided approach - because it ignores the HIV virus itself.

I have looked at a lot of the literature and I don't think this is just a case of model simplification to produce something tractable. Cultural evolution researchers have a real blind spot when it comes to cultural creatures - although they do sometimes receive an occasional mention - usually as an "analogy". I give some examples of this in my book.

A more correct and complete model would include cultural creatures and organic creatures in a symbiosis. The cultural creatures do evolve outside of their organic hosts. Books get burned. CDs get scratched, hard disc drives crash, and computers filter and process memes. Yes, you can attempt to model these as "microevolutionary transmission processes" - but that produces nasty complexity - it is much better and much simpler to just recognise cultureal avolution as dominated by symbiosis - and then reuse existing symbiosis-based models.

OK - so cultural creatures may sound like something out of science fiction - but they are essential for understanding human culture. These things have genotypes, phenotypes, and their own lifecycles - it is just obvious that they are best treated as symbionts - if you stop and think about it for a moment or two.

Due to only attempting to model half of the creatures in the relationship, cultural evolution in academia has become a feeble and dumbed-down version of memetics - which got this right from the very beginning. The academic researchers involved apparently need to pull their socks up in this area - before they go very much further.

Wednesday, 20 July 2011

Robert Boyd - resources

Robert Boyd is an experienced researcher in the field of cultural evolution.

Videos


Culture as an evolutionary phenomenon. Memes get a brief mention at 42:00.


UCLA Behavior, Evolution, & Culture.


The Cultural Niche - Social Learning and Human Adaptation


Mode and Tempo in Technological Change

CCPR Seminar: Rob Boyd (04/04/12) - Why Relatedness Is Not Enough to Predict Social Evolution.


Panel 2: Human Uniqueness, Culture and Morality (Rob starts 26 minutes in)

Podcasts

Links