Showing posts with label misc. Show all posts
Showing posts with label misc. Show all posts

Saturday, 13 October 2018

Survivalism vs hedonism

Survivalism and hedonism are doctrines surrounding fitness maximization and pleasure maximization respectively.

Both schools vary along the individualism / collectivism axis. Survivalism ranges from individualists, who are out for themselves through those who profess to be against the extinction of our species. Similarly, hedonists vary from those out for their own pleasure, to those who think the total pleasure of all sentient beings is what is important.

Hedonists think they are more advanced than survivalists. They are further up in Maslow's hierarchy of needs. They view animal evolution as a transition away from basic survivalist goals towards more advanced optimization targets dictated by nervous systems. In turn, survivalists view hedonists as short-sighted folk prone to drug-taking, masturbation, casual sex, wireheading and other dubious activities oriented towards pleasure and often at the expense of basic survival. See the picture, for more examples.

For a while, I considered these teams' rivalry to be largely misplaced. Hedonists who neglected survival were short-sighted fools likely to end up with nothing. Only hedonists who recognised that hedonism depended on survival really needed to be taken seriously. However, such hedonists would be likely to behave a lot like survivalists until they were pretty certain that they were not going to encounter more advanced alien civilizations in the alien race. That might well be tens of millions of years in the future. If the two tribes behave in much the same way for billions of years, they don't seem too dissimilar.

I'm now a bit less confident of this assessment. Hedonists might think that alien races would also be hedonistic - and so might not be too concerned about the consequences of an alien invasion. I can also imagine a hedonist gambling on extinction vs making everyone three times as happy forever. A survivalist would be unlikely to take such a gamble - but possibly a hedonist might.

It also seems that in practice that the different optimization targets do result in different behavior. For example, they differ regarding treatment of non-human animals. Many hedonists are concerned with animal welfare causes: factory farming, wild animal suffering and so on. However, to survivalists these mostly look like bad causes: non-human animals are probably not going to help make sure that Spaceship Earth completes its journey. This kind of practical difference today does not bode terribly well for the thesis that the behavior of these tribes will converge in the future. Maybe the survivalists and the hedonists will remain at odds.

Friday, 12 October 2018

Pretend to be part of your host

How do parasites avoid destruction at the hands of the host immune systems? Of course there are many ways, but one way is to pretend to be part of your host. Viruses are experts at this. They hide inside host cells, out of the way of the immune system. However the immune system has a window to cell contents the form of the major histocompatibility complex (MHC) proteins, which are detectable from outside the cell. Some viruses, for example cytomegaloviruses synthesize families of human-like proteins to fool the immune system into thinking that the host cell is still mostly human.

Is there an equivalent of this in cultural evolution? There's certainly a distinction between self and other and this is used by the memetic immune system when deciding which memes to reject. The components most clearly marked as beiong "self" are those that the host considers to be part of their own identity. So many memes compete for adoption by the identity of their host.

One way you can tell which memes are considered to be part of the identity of an individual is when they say "I am X". Some examples:

  • Religion: "I am a Christian"
  • Politics: "I am a Republican"
  • Jobs: "I am a nurse"
  • Sex: "I am transexual"
  • Ethnicity: "I am Jewish"
  • Disease: "I am disabled"
  • Age: "I am old"
One possible defense against unwanted memes masquerading as being part of you is to spring-clean your identity. If you reduce its footprint there will be fewer places for unwanted memes to hide. At any rate, regardless of whether you want to shrink your identity, it is worth looking closely at who you think you are, to make sure that it really is you.

Tuesday, 23 May 2017

Monopolies and monocultues

The organic realm doesn't have much of a problem with monopolies. If any one creature becomes very popular, parasites rise up and take it down. In human culture, though, monopolies are an identifiable issue. Why is that and what can be done about it?

Part of the reason for the difference is that some cultural entities can grow very large and powerful. In particular governments can get vary large and can survive for hundreds of years. One of the common results is government-granted monopolies. Copyright, trademark and patent laws deliberately seek to establish monopolies. These laws form the basis of many modern monopolies.

Another issue is the successful suppression of parasites. One of the reasons why cultural entities can grow so large is that parasites fail to take them down. The equivalents of hospitals, vaccinations, quarantine and medicine are at work to suppress parasites, reducing their ability to take down highly successful cultural entities.

Organic monopolies are not common, but we can see what they look like a bit by looking at agricultural monocultures. These are partly the product of human culture, but are made primarily from DNA genes - rather than memes. Agricultural monocultures do have problems with parasites. As we see in the cultural realm, they rely on parasite suppression techniques to remain viable. Agricultural monocultures exist partly because they offer advantages. In particular, support becomes easier, since only one genotype is involved.

Are there corresponding advantages for cultural monopolies? Advocates would argue that there are. Monopolies result in giants, and having some giants on your team helps in cross-team competitions. One problem with this line of argument is that it isn't clear whether monopolies do in fact result in giants. Monopolies do fairly clearly result in inequality, but you can still have giants without a few powerful folk being in charge.

One oft-cited reason for allowing monopolies is that they are of limited duration and they provide an incentive to avoid trade secrets, which would result in less sharing overall.

Having laws that promote monopolies and then more laws that make complete monopolies illegal seems like an odd way of managing things. Superficially, it looks as though lawyers are making work for other lawyers, at the expense of everyone else.

The future of monopolies is an interesting topic. Some have speculated that in the future there will just be one big monopoly. This would be rather like the "empire" in Star Wars. Whether something like this will ever happen is not yet clear.

Tuesday, 16 August 2016

Hierarchical elections

Most theorists agree that voting in national elections is an irrational activity. You gain more by doing other things besides ticking boxes in a polling station - because of the low probability of your vote affecting the outcome.

A few thinkers have claimed that your vote effectively influences others like you into behaving in a similar way, magnifying the power of your vote. E.g. see Ben Goertzel's article on the topic of why people bother to vote.

However, this raises more issues - associated with whether there are enough folk like you in relevant ways to swing an election in your favor. While this is a different sum to the one considered by most classical game theorists, it still doesn't look as though it is going to make it worth voting in a national election.

Why then do so many people vote? The UK recently saw a 72.2 percent turnout in a national referendum about leaving the EU. That's an amazing turnout. The answer seems simple: people are manipulated into voting by politicians using memes. Cultural evolution is fast and powerful and quite capable of manipulating humans into acting against their own best interests. Politicians harness these memes for their own benefit and manipulate the voting population for their own ends.

Indeed, perhaps democracy is not really about aggregating preferences by voting at all, but rather is a scheme designed to stop peasants from revolting by giving them the illusion that they have a say in how the system is run.

Rather than try and think of ways to make massive national elections make sense, I am inclined to think that other approaches would be useful. One proposal for motivating people to vote involves magnifying the importance of each voter - by limiting who can vote. For example, Robin Hanson has proposed this sort of scheme here. However, people seem to think that this solution is somehow not very democratic.

China has another approach which seems even better to me: hierarchical elections. Essentially, people elect local town councillors who vote in city selections. City leaders vote in state elections, and state leaders vote in national elections. This way, most individuals vote for a local councillor in a small election which they might plausibly care about enough to bother voting. At each level of the hierarchy the number of voters is relatively small, meaning that each vote has a bigger chance of influencing the result - and so people are more likely to vote and more likely to deliberate on their vote.

Hierarchical elections may not solve every election problem - but they seem like a step forwards to me. A country where voting doesn't make much sense is probably not the best sort of democracy to live in. Technology should make voting easier, but we could also be working on structuring elections more intelligently. I think that simulation and experimentation related to this idea would be worthwhile.

Wednesday, 10 August 2016

It's not our intelligence, stupid

Many machine intelligence enthusiasts seem to think that intelligence is what led to our domination of the planet. For example, here is Shane Legg:

The defining characteristic of our species is intelligence. It is not by superior size, strength or speed that we dominate life on earth, but by our intelligence.

- http://www.vetta.org/documents/Machine_Super_Intelligence.pdf

...and here is Demis Hassabis, saying something very similar:

If you look at how civilization has been built and everything humans have achieved, it’s down to our intelligence. It’s our minds that have set us apart.

- http://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/

This is rather contrary to the findings of students of cultural evolution - who say that it is cumulative cultural evolution that has led to our ecological domination. Our big brains are seen more as a consequence of cultural evolution, rather than the cause of it. Our big brains are meme nests - inflated by the cultural creatures that reside within, in much the same way that plant root nodules or ant domatia form. Of course culture and brains coevolved in a positive feedback loop, so one can't put all the causality on one side. The point is more that the "intelligence did it" story is incomplete - and it might be more wrong than right.

Intelligence and social skills might be correlated, but the correlation is not that strong. Ants are highly social, but not very individually intelligent. Some humans are intelligent, but quite anti-social.

What does it mean if the cultural evolution story is more correct? It means that machine intelligence enthusiasts might be well advised to look into their machine's social skills. Currently computer networks are full of firewalls and defenses against attack from other machines. Machines bristle with hostility. Maybe with a bit more trust, better reputation systems, punishment for transgressors and more surveillance, machines can become more social and more sociable - for the benefit of all.

It is sometimes said that humans are the stupidest creatures able to start a civilization. However, we don't know if that is true. Perhaps instead they were some of the least aggressive and irritable animals to start a civilization. Maybe machines will outstrip them mainly on the "social skills" front - rather than the "intelligence" front. This isn't just a scientific issue, it directly affects our strategy going forwards.

Thursday, 7 July 2016

Sharing prohibition

I've long opposed the laws that criminalize information crimes. I make an effort to put my content into the public domain wherever I can - and have been writing open source software for decades.

The weakening of the copyright laws has long seemed inevitable to me. Today we are in a kind of twilight zone - where the copyright laws are violated on a massive scale, but very few people are prosecuted. The MPAA and RIAA phased out their litigation against file sharers long ago.

The war on sharing is reminiscent of the prohibition era and the war on drugs. It ought to be an embarrassment for humans that they kept the laws against sharing on the books for so long. Sharing comes naturally to humans, they like doing it. Overall, prohibiting sharing is personally and economically destructive.

In a democracy, sharing prohibition is not normally a vote winner - since consumers who are hurt by monopolies massively outnumber producers who are awarded the monopolies. However, voting is only one side of politics, the other side is lobbying. Special interest groups argue in favor of their monopolies and the infrastructure that perpetuates them. Since producers care a lot about this issue while consumers care less, the lobbying is mostly on the pro-monopoly side. It happens on a large scale and is well funded. The resulting sharing prohibition artificially creates monopolies and promotes wealth inequality - which likely has damaging effects overall.

From the perspective of memetics, sharing prohibition limits reproduction and recombination. To the memes, it is like a directive to not have babies - except under particular circumstances. For DNA genes, the state has mostly got out of the business of interfering with reproduction. China's one child policy (now two child policy) is the most prominent exception. However, meme reproduction is still legally regulated in many countries. It is a hangover from the pre-internet days. Today, it is an appalling impediment to all kinds of activities in computer science and elsewhere. We should declare that freedom to share is a basic human right and be done with the backwards prohibition era.

Tuesday, 5 July 2016

Memetics and racism

To date, evolutionary psychology has mostly avoided the wrath of those sensitive to race issues by avoiding differences between human populations, and focussing on human universals. Despite this, it has been criticized by a wide range of the easily offended, for addressing issues to do with sex and age in humans. Evolutionary psychology has ignored, denigrated and generally failed to understand cultural evolution. Ignoring cultural differences is a pretty significant simplification. Memetics is all about more realistic models that account of cultural variation. One of the findings is that there's not really any such thing as the EEA (Environment of Evolutionary Adaptedness). Instead, humans are quite plastic and use culture to adapt to a wide range of environments. Human nature is similarly polymorphic; what is 'natural' for humans is a function of their surrounding environment and cultural context. This tends to work against the averaging out of cultural variation that is often done by students of evolutionary psychology.

One political problem with models that account for cultural variation is that differences between human populations based on DNA differences can no longer be ignored. To quantify cultural differences between two populations, DNA differences need to be controlled for. Cultural transmission involves ethnic transmission biases - where people prefer to deal and interact with those with similar ethnic backgrounds. Cultural kin selection underlies homophily, which is the basis of much xenophobia.

I figure the result of the memetic focus on human differences will be a certain degree of entanglement between meme enthusiasts and those appointed to squish racism - who generally favor human equality. So far, I can't say I have noticed much going on in this area. Memetics and racism have, so far, mostly avoided intermingling. However, it is pretty easy to see this issue coming, IMO. There will probably be factions who promote politically correct versions of memetics and other factions who are not shy about using memetics to address race-related issues.

The influence of the politically correct factions is not negligible. James Watson and Frank Ellis illustrate the issue. It seems plausible that more heads will roll in the future.

I don't have much policy advice about what can be done to help avoid problems in this area. However, I do think science ought to be in a position to help inform policy advice relating to how to build societies with less race-based conflict - something widely recognized by all parties involved to be a desirable outcome. To do this we need to study topics such as the cultural evolution of ethnic tolerance. One one hand, such a study will probably attract flames - but on the other hand a proper scientific study of ethnic discrimination seems as though it is a necessary part of avoiding future race-related conflict.

Saturday, 25 June 2016

Splitting and simplification

Splitting and simplification are common operations which scientists routinely apply. Splitting can be applied to almost anything, but it is most commonly applied to the subject matter of scientific theories. Simplification is an operation that is applied to scientific theories themselves. In science, splitting subject matter up is sometimes given a technical name: reductionism.

Reductionism has become a bizarrely unpopular part of science. The most common complaint is that splitting things up leads to a focus on the parts and ignoring their interactions. Sometimes it is emergent properties that reductionism supposedly neglects.

That gets us on to the topic of simplification. Simplification is another basic tool in the scientific toolkit. The most common associations for many scientists when they think of simplicity are Occam's razor and the parsimony principle. However these are the tip of the iceberg. Simple theories act as foundations for more complex theories. It is easy to make complex theories that completely explain data - the problem is that such theories are poor at making predictions. To get a good predictive theory you need to find smaller theories.

I would say more about the virtues of simplicity. However, Boyd and Richerson have a fine essay titled: Simple Models of Complex Phenomena: The case of cultural evolution The essay is targeted at anthropologists - who are often complexity worshippers. Simple theories are incorrect theories, they seem to think. Perhaps because so many of their colleagues are confused about the topic, Boyd and Richerson go to considerable lengths to argue the virtues of simplicity.

Many social scientists don't like simplification. They think accuracy is more important. Jonathan Haidt expresses this perspective here:

I'm actually a anti parsiomonist: I'm opposed to the pursuit of parsimony. I take Occam very literally. Let's pursue truth. If two theories are equally good at describing reality take the simplest - but don't pursue simplicity. Whoever made us didn't give a damn about simplicity, so stop pursuing simplicity in psychology.

This attitude is a confused one which fails to understand why scientists prioritize simplicity so highly.

Many of the complaints about reductionism are about simplification. The fear is that after splitting things up, interactions between the components will be ignored, or the diversity of the components will be neglected. Perhaps it should be stressed more that splitting and simplification are technically orthogonal operations.

As far as terminology goes, the term "reductionism" has some weak points - it is an "-ism" - like Mormonism and Catholoicism. The term "reductionism" sounds as though it denigrates that which it reduces. Reduce" doesn't mean "split" - so the term doesn't say what it means: it is confusing. Lastly, reductionism is jargon. I think I am going to start using the terms "splitting" and "simplification" instead.

Saturday, 18 June 2016

Cancer evolution

For a long time, immune system evolution and brain evolution were some of the best documented-examples of evolution taking place within organisms as part of development (assuming that we don't count symbiotes such as parasites and gut bacteria). Such evolution is contrary to the textbook orthodoxy that changes to individuals over their own lifespan do not count as being a type of 'evolution'.

Ridley's "Evolution" textbook says (3rd edition, p.4):

Developmental change within the life of an organism does not count as evolution in the strict sense and the definition referred to evolution as "a change between generations" to exclude developmental changes.

Of course, generations of a multi-cellular organism is one thing, and generations of its cells are another. Developmental changes can indeed be a form of evolution from the perspective of somatic cell generations. Now it looks as though the evolution of cancers is turning into another well-documented example of Darwinian evolution during development which involves somatic cell lines. Some quote illustrate the cancer-related discoveries:

Over the last 2 years, there have been an unprecedented number of publications focused on cancer evolutionary processes in solid and haematological cancers, a trend that is set to continue over the next decade. [...] It is increasingly clear that many advanced tumors follow a branched, Darwinian evolutionary trajectory. This has been demonstrated in childhood ALL [1], pancreatic cancer [2, 3], colorectal cancer [4], clear cell renal carcinoma [5, 6], breast cancer [7, 8] and prostate cancer [9] among others. [source]

...

Cancer development within an individual is also an evolutionary process, which in many respects mirrors species evolution. Species evolve by mutation and selection acting on individuals in a population; tumors evolve by mutation and selection acting on cells in a tissue. The processes of mutation and selection are integral to the evolution of cancer at every step of multistage carcinogenesis, from tumor genesis to metastasis. [source]

...

Iconic examples of evolution (birds evolving from dinosaurs, hominids evolving an upright posture, or a lineage of lobe-finned fish evolving four legs and moving onto land) might seem unrelated to the growth of a cancerous tumor, but the process underlying them both — natural selection — is identical. We typically think of natural selection acting among individuals, favoring those carrying advantageous traits and making those traits more common in the next generation. However, the key elements of this process — variation, inheritance, and selective advantage — characterize not just populations of organisms in a particular environment, but also populations of cells within our own bodies. The cells lining your intestines, for example, are not genetically uniform; there is variation among them. [source]

A wikipedia page offers a summary of the topic.

The topic is receiving interest partly since evolutionary theory is involved in the treatment of cancer.

Somatic evolution becoming more orthodox will help with acceptance of cultural evolution. For one thing, once the textbooks get rewritten, people will no longer be able to point at them, saying that changes to individuals over their own lifespan do not count as being 'evolution' - by the definition of the term.

Sunday, 29 May 2016

Reference observers

Evolutionary biology is intimately involved with the topic of how information about environments is transmitted down the generations. There's a fairly mature mathematical framework which engineers use for discussing this sort of thing, namely Shannon/Weaver information theory.

Crick famously mentioned information when specifying the central dogma. However, over the years, a number of people have complained about attempts to apply information theory to biology. The complaints are various: information is subjective; it isn't clear how to apply the theory; information theory is confusing; organisms inherit more than just information from their ancestors; the results are not very useful - and so on. Others think an information-based analysis is useful, but prefer other information metrics.

To give some examples, here is Daniel Dennett explaining why he doesn't use Shannon information (44 minutes in):

I'm not talking about bits when I'm talking about information, I'm talking about information in a more fundamental sense. Shannon information measured in bits is a recent and very important refinement of one concert with information but it's not the concept I'm talking about. I'm talking about the concept with information where when one chimpanzee learns how to crack nuts by watching his mother crack nuts there's information passed from mother to offspring and that is not in bits, that is that is an informational transfer but has not accomplished in any Shannon channel that is worth talking about.

Here is John Wilkins asserting that Shannon-Weaver information theory has not been very useful:

Attempts have been made to apply the Shannon-Weaver theory of communication to genetics but have typically failed to assist research (Hariri, Weber, and Olmsted 1990). The broader discipline of bioinformatics makes use of this and other analytic techniques to find patterns in data sets that may turn out to be functional or significant (Mount 2004), but such techniques require validation by experiment, and there is debate over how useful it is. Part of the problem with the Shannon account is that it is hard to find analogues for the general abstract entities of Shannon’s account.

Another common complaint is that creationists frequently use information theory to criticize evolutionary theory. Here, information theory seems to be getting tarred by association. For more examples, see the references of this post. I think that Shannon/Weaver information theory is applicable to evolutionary biology and is useful when applied there. This post is not really about that, though - instead it introduces a concept which I think is useful when applying information theory.

A conventional interpretation of the term "information" involves the "unexpected" content of a message. A novel message contains information; a message that you already know the contents of does not. This concept can be formalized and quantified if the observer places a probability density function over the domain of the expected input symbols before they receive them - allowing the 'surprise value' of the message to be quantified in bits.

However, this concept of information faces a problem when applied to scientific domains: namely, it is subjective. Two observers can easily differ on the issue of what the information content of a message actually is. Subjectivity is a problem in scientific domains: scientists go to considerable lengths to find objective metrics, to help other scientists reproduce their work. This post describes a way to resolve this issue.

It is true that the conventional interpretation of "information" is subjective. However, it is pretty easy to convert this into an objective metric - simply by specifying the observer involved. If scientists do not observe a message directly, but instead use a clearly-specified reference observer to observer it, they can agree on the information content of a message.

Reference observers are sometimes called "virtual observers" or "standard observers". To give an example of a reference observer, consider an agent with a maximum entropy prior over the available symbols and no memory or state variables. Such an observer would measure the information carrying capacity of a message. To such an agent, a 650 MB CD ROM would contain 650 MB of information. A 4.7 GB DVD would contain 4.7 GB of information - and so on.

Other portable observers could be based on standard compressors. PKZIP and GZIP are examples of widely available compression programs that could be used. They have their own prior probabilities and learning algorithms, and are standard and so can be specified by simply naming them.

A related complaint is that with lots of possible reference observers available, researchers will pick ones that promote their own theories or results, again eliminating the objectivity of science. That is a genuine concern. However pretty much the same problem applies to Kolmogorov complexity, or to priors in Bayesian statistics. This is a well-known issue which scientists should be familiar with handling. IMO, having multiple reference observers available is better than attempting to promote a one-size-fits-all scheme for measuring information scientifically.

I think that the concept of "reference observer" fairly neatly overcomes many of the objections to the use of Shannon/Weaver information theory which claim that information theory is subjective. If you specify the observer involved, the subjectivity vanishes. It can be complex to specify some observers - but other observers are very simple and easy to specify, and some standard observers are widely available.

References

Saturday, 9 April 2016

Restraint and confinement

This post is about a topic in symbiology - symbiont restraint of host. The idea applies to both organic and cultural symbionts, so I will attempt a presentation in general terms and then give examples from both domains.

Symbionts have their own optimization targets, involving maximizing the number of their offspring. These typically conflict with the optimization target of their hosts. So the symbionts typically manipulate their host into acting against its own interests. There are many ways of performing such manipulation - but this page is about one type of manipulation: preventing the host from acting.

Restraint is one of the simplest types of manipulation. Restraint has most of the advantages of destruction over construction. Just as it is easier to destroy than create, it is easier for symbionts to eliminate host behavior than it is to create new behaviors.

High on the list of behaviors that it often pays for symbionts to reduce involves making host babies. Babies consume time and resources, that might otherwise be spent on symbiont reproduction.

In the organic realm, many parasites sterilize their hosts, or reduce their fertility. Among humans, sexually transmitted infections are a common source of infertility. Chlamydia and gonorrhea are common culprits. If you have babies, you are likely to have less sex with fewer partners. Keeping you childless is pretty clearly in the interest of STDs.

Cultural symbionts reduce fertility in much the same way. Degree of female education, is strongly negatively correlated with fertility. Cross-country comparisons show that the most educated countries have the lowest fertility. Family planning and contraceptive memes are implicated. Thanks to technological memes, many choose to have sex without paying the childcare costs.

Many symbionts share the same goals regarding preventing hosts from engaging in resource-intensive activities that further their own ends. Their influences tend to add up. The result is a bit of a war between a host and its symbonts. The symbionts don't all pull in the same direction, but their pulls are correlated in ways that restrain host activities. Even mutualist symbionts can contribute to the restraint.

The idea of restraint by symbionts is similar to Mark Changizi's proposal that memes harness human hosts. Mark's harnesses also restrain their hosts. They also typically result in resource transfers from host to symbiont. The idea here is that no harness needs to be involved. Merely caging or confining the host can be sufficient to effect such resource transfers.

Restraint of host resource expenditure on host offspring isn't the only common interest of host symbionts. Many symbionts are also interested in promoting host social behavior, for example.

This idea provides theoretical support for ideas in folk memetics about meme jails, meme bubbles and people being imprisoned by their own memes.

Sunday, 27 March 2016

On NLP

Looking at what the internet thinks about NLP (Neuro-linguistic programming) suggests that it has decided that NLP is pseudoscience.

NLP was a bit pretentious - by putting the term "neuro" in its name - but we could have lived with that. It is true that humans are programmable animals - and that they can be programmed using language. This is fairly obviously a topic for scientific study.

It seems a bit unfortunate that NLP didn't make more headway. If NLP fades away there will be a bit of a void in the niche it once occupied. I think we should probably hang on to the "linguistic programming" part. I can't think of any more appropriate terminology. We do have the well-established term "suggestion" - but "linguistic programming" is specifically to do with language, and not all "linguistic programming" comes in the form of suggestions.

The problem I see with "linguistic programming" is that you can program both brains and computers with language - but these are pretty different topics, so there is not all that much need for an umbrella term.

The most obvious alternative to this path that I see is to try and hang on to NLP - and turn it into a respectable topic. I'm sure that that path will have some advocates. I'm not sure at this stage that this plan would be effective.

Saturday, 13 February 2016

Evolutionary progress and political correctness

I've long supported the idea of evolutionary progress. I've previously argued that cultural evolution will cause a reexamination of the topic. One author who understands cultural evolution - Kevin Kelly - has argued in favor of evolutionary progress - in What Technology Wants. However, few students of cultural evolution seem to have publicly addressed the topic - which is rather disappointing.

I think the story of the suppression of the idea of evolutionary progress has to do with political correctness. Ever since Darwin wrote "Never say higher or lower" in a notebook margin, evolutionary progress has been a hot potato - because of the political implications of some individuals or groups being 'higher' than other ones. Many humans have a sense of egalitarianism; they favor equality, and strive to create it where it does not exist. Evolutionary progress conflicts with the idea of egalitarianism in a number of ways - by denying that equality exists, and by casting doubt on the idea that equality is desirable. In the face of this conflict, many keep their egalitarian ideas and reject the concept of progress.

For me, this seems like a fairly common situation. Political correctness says one thing, and scientific truth says another. Racial and sexual equality run into the same problem: science says one thing, political correctness says something else and then the humans get their panties in a knot.

Evolutionary theory doesn't do equality. The whole idea of evolution is predicted on some creatures doing systematically better than other ones. Cultural evolution compounds the problem - by proposing that differences between humans can arise as a result of cultural transmission - and so can be very large.

The link to political correctness doesn't seem to be much of a secret. One of the most famous proponents of denial of evolutionary process was Steven J Gould. Gould made no secret of his Marxist tendencies.

The influence of political correctness on science is an insidious problem. As we race towards an era of intelligent machines, it becomes increasingly important to have accurate models of our situation. Massive wealth inequality mocks our preferences for egalitarianism. Humans will face increasing cognitive dissonance as their superstitions conflict with the facts.

Friday, 29 January 2016

Cultural handicaps

The handicap principle has proved to have some merit in the organic realm. Handicaps can be a form of costly signaling. However handicaps don't need to be in the genes. They can be culturally transmitted. This article is about cultural handicaps.

Boys sometimes handicap themselves in order to show off to girls. They ride bicycles with no hands, they get drunk and take risks and they engage in costly displays of public generosity. The handicap principle suggests that public charitable donations will often be made by men.

Ladies also adopt cultural handicaps. They wear high-heeled shoes, crush their waists using corsets, bind their feet, conceal their faces and mutilate themselves.

Cultural handicaps are celebrated in popular culture. Inigo Montoya and The Man in Black both fight with their left hand in The Princess Bride. Luke Skywalker fights blindfold in Star Wars, A New Hope.

Cultural handicaps are also used in the game of go - where one player disables himself in order to have a fair fight with another. Handicapping is common in sports. There's a Wikipedia page about the topic.

Many ostentatious social norm violations could be seen as being handicaps. Real men wear pink is one example.

So far, cultural handicaps do not appear to have received the same level of study as organic handicaps. This is probably because of the immature state of the science of cultural evolution.

Saturday, 26 December 2015

Cultural recapitulation theory

Recapitulation theory refers to the idea that organism development recapitulates evolutionary history. As Ernst Haeckel's put it, "ontogeny recapitulates phylogeny". Most biologists would describe Haeckel's ideas as being widely discredited. The story of Haeckel doctoring his embryo illustrations to support recapitulation theory has been widely retold.

Recapitulation theory encapsulates a rather simple truth - that development often proceeds by strapping on extra developmental phases. When this happens, ontogeny does indeed recapitulate phylogeny.

The brain makes a simple example. Brains are divided into layers, and over evolutionary time, more layers have been added.The human neocortex, for example consists of six layers. During development the neural layers are formed progressively. Migrating neurons climb up a scaffolding made of radial glial cells and bypass previous layers of neurons in the cerebral cortex, creating a new layer on top of their predecessors. This mirrors development over evolutionary time - where ancestors had fewer layers of neurons.

A simple, pure example of cultural recapitulation theory can be found in knot theory. Knots are often formed by tying knows on top of other knots. The simpler knots come first historically as well as during knot construction. A reef knot is a simple example of one knot being tied on top of another knot in order to strengthen it.

The concept of "cultural recapitulation" is often used in another way. Some say that the way that individual learning mirrors historical discovery is a case of cultural recapitulation. For example, the order in which scientific concepts are taught to children might mirror the order in which they are discovered. This is certainly recapitulation and it does involve culture, but the analogy with Ernst Haeckel's idea is weaker than with the knot example I gave. The reason is that the development involved is the development of a young animal - a memetic host rather than a memetic product. The corresponding biological analogy would be if the way in which organisms were infected with pathogens reflect the sequence in which those pathogens evolved. If is easy to imagine reasons why that might be true - for example new pathogens might be less expert at spreading to new hosts. However, this seems a bit different to classical recapitulation theory - since that does not normally involve symbiosis.

Will cultural recapitulation theory suffer the same fate as its organic counterpart? It is, perhaps too early to tell. However, maybe cultural recapitulation theory will help to revitalize recapitulation theory in the organic domain. It is a bit of a shame that recapitulation theory is so widely labelled as a dud idea. Perhaps cultural examples will help to illuminate the truth at the core of the idea.

Saturday, 5 December 2015

More meme denialism

There are still a lot of people who are totally confused about cultural evolution. Whether due to ignorance, stupidity, bad teaching, or whatever, there are still lots of people who just don't get it. They are still on the wrong side of the meme paradigm shift.

We can say these people lack meme literacy. Or we can describe them as being meme challenged. However, sometimes, a bit more of a verbal kick in the ass seems desirable. If people are particularly ignorant of the literature, seem to think they are entitled to spout nonsense on the topic, and fail to update on evidence, the term 'meme denialism' may be appropriate.

I think the term should be reserved for the worst offenders. So, I'm thinking that Steven Pinker and Massimo Pigliucci are in denial about memes, while Peter Richerson and Rob Boyd are more in the 'minor misunderstandings' zone.

When Helena Cronin says:

There's culture; there's history; there's change; there's progress; there's technological innovation; there's growth of knowledge; there's social learning; and there's lots more. But there's no cultural evolution.

That's a nice example of what I'm talking about: complete denial of the whole field of study.

Another example comes from John Gray, writing:

There is no general theory of evolution.

Another case is Jonathan Marks (2000):

Now unlike genes, memes have the decided disadvantage of not actually existing.
This is what meme denialism looks like.

Update: I previously wrote about meme denialism here.

Wednesday, 2 December 2015

Creative destruction

It is easier to destroy than it is to create. If similar efforts expended on creation and destruction, the destructive change is often are bigger - sometimes much bigger. So: those who seek leverage should seriously consider destruction as an option.

I've written about the possibility of positive destruction - in my 2010 positive destruction article.

In the context of cultural evolution, creative destruction typically involves destroying memes, preferably bad memes.

This is partly the job of promoters of skepticism and rationality. As an example, both Dawkins and Dennett have had a go at sabotaging religious memes. I have often expressed puzzlement at this behaviour - since religious though has been widely discredited by scientists. Scientists attacking Abrahamic religions in modern times look a bit strange - since those religions have not been scientifically credible for a long time now. Scientifically, they are a dead issue. However, maybe, by taking advantage of the power of destruction, they are still doing some good.

I identified some other bad causes in my 2010 'bad causes' video. However, I didn't really link my conclusions up with those of the positive destruction essay. Top of my list at the time was climate change. Reviewing the topic five years later, climate change is still my number one bad cause. I don't think I have ever seen so many resources and time frittered away on such a worthless and ineffectual cause. Experts on cause prioritization seem to fairly uniformly agree that climate change is not a high priority. How then to explain the wasted billions?

One of the most obvious explanations is that fear sells. Global warming alarmists are fear-mongering. I also think that virtue signaling explains a lot about the irrational global warming hysteria. The cause offers people a chance to save the world - a well-known superstimulus to do-gooders. Trying to save the world shows that you care a lot.

Maybe global warming alarmism has enough detractors for it to no longer be low hanging fruit for critics. However it is still pretty fat - and fat targets are often attractive.

If so, the efforts of Matt Ridley and Bjorn Lomborg (among others) may prove to have been especially welcome.

I am especially disappointed with the role that many scientists have played in the fiasco. Like Matt Ridley, I see the climate wars especially indicative of scientific funding bias. Ridley explains the problem in What the climate wars did to science. Scientists should be the first to speak up in a situation like this. A few scientists have done this = but overall, this is not what we have seen. It is a big embarrassment to those who want to proudly call themselves scientists.

Tuesday, 24 November 2015

Evolutionary frameworks

Some say evolution is a theory, others say it is a fact. I tend to regard evolution as a framework. It is OK to regard evolution as a theory - but as theories go, evolution has a lot of holes in it. On its own, evolutionary theory doesn't make all that many predictions. It is largely reliant on other theories to help it to make useful predictions.

It's possible to make a map of the holes in evolutionary theory - to see where other theories can be attached in order to provide support. That's the main function of this post.

The biggest hole in vanilla evolutionary theory is that it generally lacks a predictive theory explaining which creatures are fitter. For birds, the additional theories of aerodynamics are required; for bats, a theory of echolocation is needed - and so on. These other theories are more closely associated with developmental biology than they are with evolutionary theory. In general, additional theories that map from genomes to expected fitnesses are required.

Evolutionary theory includes or interfaces to genetics. Genetics also has some holes - or at least permits other modular theories to be attached to it. Genetics needs theories of mutation, merging and error correction. There are various types of mutation: point mutations, frameshift mutations, insertions, deletions and so on; mutational theories describe what can happen, when it can happen and how likely it is to happen. "Merging" theories cover recombination, symbiosis and rarer cases where genomes fuse or assimilate each other. A full theory theory must deal with mate selection - and the choice of symbiotic partners - since these factors determine which genomes merge. Error correction theories affect both mutation and merging. Genome modifications are post-processed by error detection and correction processes. These bias the results of these processes. Some modifications are permitted, others are rejected, and others are modified further. Error correction results in an adaptive bias to mutations - since the most deleterious mutations are selected against the most strongly by these mechanisms.

Some of the more vocal proponents of the basic idea in this post - that evolutionary theory contains holes - are Geoffrey Hodgson and Thorbjørn Knudsen. For example, in the paper: Why we need a generalized Darwinism, and why generalized Darwinism is not enough, these authors explain how evolutionary theories do not stand alone and depend on other bodies of knowledge. I agree with their perspective on this issue.

Friday, 20 November 2015

Darwin meets Turing

A cryptic title - but this post is about applying models of universal computation to universal Darwinism.

Most versions of universal Darwinism agree that evolutionary theory applies to brains and thinking. This idea was pioneered by B. F. Skinner and D. T. Campbell and promoted by W. H. Calvin, G. Cziko and G. Eldeman among others. Evolutionary theory explains all goodness of fit and all knowledge gain.

If evolution explains the operation of brains, it ought also to explain the operation of computers - since both are general purpose input-transformation-output learning systems. We have some nice, simple models of computation. Can universal computation illuminate Universal Darwinism? In this post we will find out.

We will use the NAND gate + interconnect model of parallel computation and see how it relates to evolutionary models. Copying is a primitive operation in Darwinism: in NAND land it corresponds to signal branching. Selection is another primitive operation in Darwinism: in NAND land, it corresponds to signal termination. That just leaves the NAND gate itself. The NAND gate takes two inputs and produces one output. There are two ways of looking at the NAND operation from a Darwinian perspective. One is as a conditional selection operation. A NAND gate obliterates or inverts one of its inputs depending on the value of the other one. The other way is as a merging or joining operation between two signals. That completes the relationship between these two models.

What did we learn from this exercise? Merging or joining operations turned out to be fundamental. Mutation was not fundamental. It turns out that you can model mutations using copying, selection and merging - if necessary.

Intuitively, the products of evolution include brains - so it is not surprising that some models of evolution are capable of computing partial recursive functions.

However, a universal model has some negative aspects. There's a sense in which universal models are capable of producing any output - and notoriously, models which predict everything are not very useful. We can take some consolation in the idea that there can be all kinds of differences between different universal systems - they differ in speed, degree of parallelism, memory to compute ratio, relative component costs, brittleness, support for synchronous operation - and so on.

One thing I learned from building this model is that my usual reply to critics who allege some Darwinian models lack predictive power is not completely satisfactory. I usually say that constraining the scope of the mutation operator is enough to limit the resulting predictions. However, if there's a recombination operator, that can also lead to universality - and produce a model that is compatible with a lot of observations. It looks as though mutation and recombination both need limiting.

This post presents a model on the level of the bit. Another way of building evolutionary models of computational processes is to rise above the level of the bit. Conventionally, most mutation and recombination takes place between genes - rather than bits - and genes are conventionally quite a bit bigger than bits. This path produces a range of interesting models which have already been well explored in some detail by genetic algorithm and genetic programming enthusiasts.


Thursday, 22 October 2015

The function of ethics

From a biological perspective, ethical systems play several functional roles for their users.

In particular, ethics allows signalling virtue. Ethical systems are typically fairly other-oriented and they are frequently involved in manipulating the behavior of others. A shared ethical system can be a badge of group membership. A concern with ethics signals affluence: poor folk are more interested in means to obtain food and shelter.

These benefits are part of why humans are interested in ethics. However, from the perspective of memetics, these benefits aren't the real function of ethical systems - since they accrue to the human hosts involved. Since ethical systems are socially transmitted memeplexes it is reasonable to ask how their features benefit not their hosts, but themselves.

In memetics, the primary function of ethical systems is to spread. To do this, they need to be extensively publicly discussed. They also need to be taught to other individuals - the younger the better. This perspective probably helps to explain why there is so much public discussion about ethics. Not only do humans signal their virtuous nature to others by exhibiting their ethical systems, the ethical systems are themselves directly adapted to spread between hosts via teaching and instruction.

The signalling aspects of ethics play double-duty. On one hand, ethical signalling ethical content lets human hosts signal to other humans how virtuous they are - and how much spare time they have. The signalling of ethical content also directly helps ethical systems to spread.